In the 1960s, generative grammar was widely acclaimed as offering a key to understanding the mind and human nature. Given the currently lowly status of linguistics in the cognitive neurosciences, the case can be made that this promise has not been fulfilled. Beside various sociological reasons for this failure, there were some good scientific reasons as well.

What was right about generative grammar was its focus on the individual's ability to produce and understand utterances, and in particular on the child's acquisition of this ability. This leads to the hypothesis of Universal Grammar, a human cognitive specialization for learning language - a hypothesis still subject to bitter dispute.

However, there was an important mistake at the heart of the technology of generative grammar: the assumption that the syntactic component is the sole course of combinatoriality, and that everything else is "interpretive." This assumption of "syntactocentrism" has been transmitted from Aspects model through Government-Binding Theory into the contemporary Minimalist Program.

The proper approach started to develop in phonology in the mid-1970s: the idea that phonological structure is the consequence of several independent generative systems connected by interface principles. This independence clearly extends to the relation between syntax and phonology (but syntacticians never caught on). Similarly, all substantive approaches to semantics since the 1970s have assumed an autonomous generative system; this is necessarily linked to syntax by interface constraints. The outcome is an architecture of multiple parallel generative components linked by interface components. All components can be interpreted as constraint systems, integrated by unification.

The parallel architecture leads to an integration within linguistics, in that it makes clear the interconnections among phonology, syntax, and semantics, as well as the connection between phrasal combinatoriality and lexical combinatoriality (i.e. morphology). In addition, it leads to a far better integration with the rest of cognitive neuroscience in three respects. First, this architecture fits naturally into the larger architecture of the mind/brain. Second, it leads to a natural and flexible interpretation of the competence-performance distinction, in that the rules of grammar are directly involved in processing. Third, it leads to a natural story for the incremental evolution of the language capacity.

Refreshments will be available
Everyone is welcome to attend!

For information please call the Cognitive Science Office at (716) 645-3794 or check http://wings.buffalo.edu/cogsci/html/2002Spring.htm